Embryonic axis induction by the armadillo repeat domain of beta- catenin: evidence for intracellular signaling

نویسندگان

  • N Funayama
  • F Fagotto
  • P McCrea
  • B M Gumbiner
چکیده

beta-catenin was identified as a cytoplasmic cadherin-associated protein required for cadherin adhesive function (Nagafuchi, A., and M. Takeichi. 1989. Cell Regul. 1:37-44; Ozawa, M., H. Baribault, and R. Kemler. 1989. EMBO [Eur. Mol. Biol. Organ.] J. 8:1711-1717). Subsequently, it was found to be the vertebrate homologue of the Drosophila segment polarity gene product Armadillo (McCrea, P. D., C. W. Turck, and B. Gumbiner. 1991. Science [Wash. DC]. 254:1359-1361; Peifer, M., and E. Wieschaus. 1990. Cell. 63:1167-1178). Also, antibody perturbation experiments implicated beta-catenin in axial patterning of the early Xenopus embryo (McCrea, P. D., W. M. Brieher, and B. M. Gumbiner. 1993. J. Cell Biol. 123:477-484). Here we report that overexpression of beta-catenin in the ventral side of the early Xenopus embryo, by injection of synthetic beta-catenin mRNA, induces the formation of a complete secondary body axis. Furthermore, an analysis of beta-catenin deletion constructs demonstrates that the internal armadillo repeat region is both necessary and sufficient to induce axis duplication. This region interacts with C-cadherin and with the APC tumor suppressor protein, but not with alpha-catenin, that requires the amino-terminal region of beta-catenin to bind to the complex. Since alpha-catenin is required for cadherin-mediated adhesion, the armadillo repeat region alone probably cannot promote cell adhesion, making it unlikely that beta-catenin induces axis duplication by increasing cell adhesion. We propose, rather, that beta-catenin acts in this circumstance as an intracellular signaling molecule. Subcellular fractionation demonstrated that all of the beta-catenin constructs that contain the armadillo repeat domain were present in both the soluble cytosolic and the membrane fraction. Immunofluorescence staining confirmed the plasma membrane and cytoplasmic localization of the constructs containing the armadillo repeat region, but revealed that they also accumulate in the nucleus, especially the construct containing only the armadillo repeat domain. These findings and the beta-catenin protein interaction data offer several intriguing possibilities for the site of action or the protein targets of beta-catenin signaling activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of a secondary body axis in Xenopus by antibodies to beta- catenin

We have obtained evidence that a known intracellular component of the cadherin cell-cell adhesion machinery, beta-catenin, contributes to the development of the body axis in the frog Xenopus laevis. Vertebrate beta-catenin is homologous to the Drosophila segment polarity gene product armadillo, and to vertebrate plakoglobin (McCrea, P. D., C. W. Turck, and B. Gumbiner. 1991. Science (Wash. DC)....

متن کامل

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

Induction of a Secondary Body Axis in Xenopus by Antibodies to -Catenin

We have obtained evidence that a known intracellular component of the cadherin cell-cell adhesion machinery, /3-catenin, contributes to the development of the body axis in the frog Xenopus laevis. Vertebrate/3-catenin is homologus to the Drosophila segment polarity gene product armadillo, and to vertebrate plakoglobin (McCrea, P. D., C. W. Turck, and B. Gumbiner. 1991. Science (Wash. DC). 254: ...

متن کامل

Antagonism of Cell Adhesion by an α-Catenin Mutant, and of the Wnt-signaling Pathway by α-Catenin in Xenopus Embryos

In Xenopus laevis development, beta-catenin plays an important role in the Wnt-signaling pathway by establishing the Nieuwkoop center, which in turn leads to specification of the dorsoventral axis. Cadherins are essential for embryonic morphogenesis since they mediate calcium-dependent cell-cell adhesion and can modulate beta-catenin signaling. alpha-catenin links beta-catenin to the actin-base...

متن کامل

Binding to cadherins antagonizes the signaling activity of beta-catenin during axis formation in Xenopus

beta-Catenin, a cytoplasmic protein known for its association with cadherin cell adhesion molecules, is also part of a signaling cascade involved in embryonic patterning processes such as the determination of the dorsoventral axis in Xenopus and determination of segment polarity in Drosophila. Previous studies suggest that increased cytoplasmic levels of beta-catenin correlate with signaling, r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 128  شماره 

صفحات  -

تاریخ انتشار 1995